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Abstract—This paper aims at presenting a simulative analysis
of the main properties of a new R-estimator of shape matrices in
Complex Elliptically Symmetric (CES) distributed observations.
First proposed by Hallin, Oja and Paindaveine for the real-valued
case and then extended to the complex field in our recent work,
this R-estimator has the remarkable property to be, at the same
time, distributionally robust and semiparametric efficient. Here, the
efficiency of different possible configurations of this R-estimator
are investigated by comparing the resulting Mean Square Error
(MSE) with the Constrained Semiparametric Cramér-Rao Bound
(CSCRB). Moreover, its robustness to outliers is assessed and
compared with the one of the celebrated Tyler’s estimator.

Index Terms—CES distributions, scatter matrix estimation,
semiparametric models, R-estimator.

I. INTRODUCTION

The problem of estimating the covariance/scatter matrix
from a set of observation vectors is a crucial step in many
signal processing and machine learning applications, such as
signal detection, clustering and distance learning. Among all
the possible non-Gaussian and heavy-tailed statistical data
models, the family of Complex Elliptically Symmetric (CES)
distributions have been recognized to provide a general and
reliable characterization of random observations in a wide
range of real-word scenarios [1]. In short, a set of L i.i.d. CES
distributed vectors, say CN 3 zl ∼ CESN (µ0,Σ0, h0), l =
1, . . . , L, is fully characterized by a location parameter µ0,
a scatter matrix Σ0 and a density generator h0 : R+

0 → R+

that generally plays the role of a nuisance function. In fact,
inference procedures in CES distributed data usually involves
the joint estimation of µ0 and Σ0 in the presence of an
unknown density generator h0. Remarkably, this additional,
infinite-dimensional, nuisance parameter puts the CES model
in the framework of semiparametric models. Note that, due
to the well-known scale ambiguity between Σ0 and h0, only
a scaled version of the scatter matrix, called shape matrix, is
identifiable. For this reason, from now on, we only consider
the shape matrix V1,0 , Σ0/[Σ0]1,1 as parameter of interest
instead of the unconstrained scatter matrix Σ0.

As recently pointed out in both the statistical [2]–[5] and
signal processing literature [6]–[9], the semiparametric nature
of the CES model allows for the derivation of semiparametric
information bounds and robust inference procedures able to
handle with the lack of a priori knowledge on the actual
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density generator h0. Common inference algorithms in CES
distributed data are based on the celebrated class of robust M -
estimators that encompasses Huber’s and Tyler’s estimators as
special cases (see e.g. [1]). The two main advantages of M -
estimators of shape matrices are: i) their performance does
not drop dramatically in severe heavy-tailed scenarios and ii)
they are

√
L-consistent under any, possibly unknown, density

generator h0. On the other hand, their major drawback is their
lack of (semiparametric) efficiency, as shown in [7], [8].

In their seminal paper [3], building upon the Le Cam’s
theory of Local Asymptotic Normality and on the invariance
properties of rank statistics1, Hallin, Oja and Paindaveine have
shown that it is possible to derive a shape matrix estimator able
to reconcile the two dichotomic properties of robustness and
semiparametric efficiency. This estimator, derived in [3] for
Real Elliptically Symmetric (RES) distributed data, belongs to
the class of rank-based, R-estimators. In our recent work [9],
a tutorial derivation of such R-estimator has been proposed
together with its extension to CES data.

The aim of the present paper is then to validate the theo-
retical results about the complex R-estimator provided in [9]
with a comprehensive investigation of its statistical properties.
Specifically, its finite-sample performance will be analyzed in
various scenarios and its semiparametric efficiency assessed
by comparing its Mean Squared Error with the Constrained
Semiparametric Cramér-Rao Bound (CSCRB) derived in [7],
[8]. Moreover, its robustness to outliers, i.e. random vectors
characterized by a different distribution with respect to the
one of the observations, will be investigated through numerical
simulations.

Notation: The notation used in this paper follows the one
introduced in [9] and it is not reported here for brevity.
However, for the sake of clarity, we recall the definition
of some operators and special matrices that will be exten-
sively used ahead. Specifically, vec indicates the standard
vectorization operator that maps column-wise the entry of
an N × N matrix A in an N2-dimensional column vector
vec (A). The operator vec(A) defines the N2−1-dimensional
vector obtained from vec (A) by deleting its first element, i.e.
vec (A) , [a11, vec(A)T ]T . A matrix A such that [A]1,1 , 1,

1The order statistics QL(1) < QL(2) < . . . < QL(L) of a set of
(continuous) real-valued random variables Q1, . . . , QL are the values of such
random variables ordered in an ascending way. The rank rl of Ql is its
position index in the order statistics.



is indicated as A1. Let us define the following two matrices:

Π⊥vec(IN ) = IN2 −N−1vec(IN )vec(IN )T , (1)

P , [e2|e3| · · · |eN2 ]
T
, (2)

where ei is the i-th vector of the canonical basis of RN2

.
For the sake of interpretability and of consistency with the
existing literature, in all our plots we show the results related
to a re-normalized version of each considered estimator as:

V̂ϕ
γ , NV̂ϕ

1,γ/tr(V̂
ϕ
1,γ), (3)

where γ and ϕ indicates the estimator at hand. As performance
index for the shape matrix estimators, we use:

ςϕγ , ||E{vec(V̂ϕ
γ −V0)vec(V̂ϕ

γ −V0)H}||F , (4)

while as performance bounds, we adopt the index [7], [8]:

εCSCRB , ||[CSCRB(Σ0, h0)]||F . (5)

Note that V0 = NΣ0/tr(Σ0) while Σ0 and h0 represent
the true scatter matrix and the true density generator. In all
the simulations presented in this paper, we use the following
common setting:
• Σ0 is a Toeplitz Hermitian matrix whose first column is

given by [1, ρ, . . . , ρN−1]T ; ρ = 0.8ej2π/5 and N = 8.
• The zero-mean data are generated according to a complex
t-distribution PZ(z|Σ0, h0) whose pdf is given by:

pZ(z|Σ0, h0) = |Σ0|−1h0
(
zHΣ−10 z

)
, and (6)

h0(t) =
Γ(λ+N)

πNΓ(λ)

(
λ

η

)λ(
λ

η
+ t

)−(λ+N)

, (7)

where λ ∈ (1,+∞) is a shape parameter that controls the
tail of the distribution, while η is a scale parameter that
accounts for the data statistical power σ2. Specifically,
under the assumption of finite second order moments,
we have that σ2 = λ/(η(λ − 1)). In our simulation, we
choose σ2 = 4.

• The number of Monte Carlo runs is 106.
It is worth underlying here that the particular choice of the
complex t-distribution as nominal CES distribution for the
observations does not represent a limitation, since, due to
the semiparametric nature of the considered R-estimator, the
findings obtained for t-distributed data holds true for any other
CES distributions.

II. A ROBUST SEMIPARAMETRIC EFFICIENT R-ESTIMATOR

The aim of this Section is to recall, from an algorithmic
standpoint, the R-estimator introduced in [3] for the RES case
and in [9] for the CES case. We refer the reader to [3] and
[9] for a deep theoretical investigation on its derivation and
its asymptotic properties. Moreover, for the ease of exposition,
in the following we assume to have a zero-mean dataset. A
procedure to handle non-zero mean data is discussed in [9]. For
the interested reader, our Matlab and Python implementation
of the algorithm can be found online at [10].

Let zl ∼ CESN (0,V1,0, h0), l = 1, . . . , L be a set of
i.i.d., CES distributed, observations. The robust semiparamet-
ric efficient R-estimator of V1,0 is given by:

vec(V̂1,R) = vec(V̂?
1) + L−1/2Υ̂−1∆̃V̂?

1
, (8)

where V̂?
1 is a preliminary

√
L-consistent estimator of V1,0.

The matrix Υ̂ and the vector ∆̃V̂?
1

are defined respectively as

Υ̂ , α̂LV̂?
1
LH

V̂?
1

, (9)

∆̃V̂?
1
, L−1/2LV?

1

L∑
l=1

K

(
r?l

L+ 1

)
vec(û?l (û

?
l )
H) (10)

and the scalar α̂ can be obtained as:

α̂ = ||∆̃V̂?1+L−1/2H0−∆̃V̂?1
||/||LV̂?1

LH
V̂?1

vec(H0)||, (11)

where H0 is a “small perturbation”, Hermitian, matrix such
that [H0]1,1 = 0. Following [9], we set H0 = (G + GH)/2
where [G]i,j ∼ CN (0, υ2), [G]1,1 = 0 and υ = 0.01.

The function K : (0, 1) → R+ is generally indicated as
score function and belongs to the set K of continuous, square
integrable functions that can be expressed as the difference of
two monotone increasing functions.

All the other terms involved in the definition of the R-
estimator in (8) are summarized as follows [9]:
• Q̂?l , zHl [V̂?

1]−1zl,
• û?l , (Q̂?l )

−1/2[V̂?
1]−1/2zl,

• r?1 , . . . , r
?
L are the ranks of the (continuous) real random

variables Q̂?1, . . . , Q̂
?
L,

• LV̂?
1
, P

(
[V̂?

1]−T/2 ⊗ [V̂?
1]−1/2

)
Π⊥vec(IN ).

In can be noted that, for a practical implementation of the
R-estimator in (8), we just need to specify two terms: the
preliminary estimator V̂?

1 and the score function K ∈ K. In
the following, a discussion on the most suitable choice for
these two terms is provided.

III. ON THE CHOICE OF THE PRELIMINARY ESTIMATOR V̂?
1

This Section is devoted to the study of the impact of the
preliminary estimator V̂?

1 on the “finite-sample” performance
of the R-estimator in (8). In fact, if on one hand, any pre-
liminary

√
L-consistent estimator leads to an asymptotically

semiparametric efficient R-estimator, on the other hand, the
choice of V̂?

1 may have significant impact on the “finite-
sample” performance of V̂1,R. Here, we analyze two prelim-
inary estimators: the Sample Covariance Matrix (SCM) and
Tyler’s estimator.

A. The SCM as preliminary estimator

Let {zl}Ll=1 ∼ CESN (0,V1,0, h0) be a set of i.i.d. CES
distributed random vectors with unknown density generator
h0. The SCM preliminary estimator V̂?

1,SCM is given by:

V̂?
1,SCM =

Σ̂SCM

[Σ̂SCM ]1,1
, Σ̂SCM ,

1

L

∑L

l=1
zlz

H
l . (12)



Under the assumption of finite second order moments,
V̂?

1,SCM is a
√
L-consistent estimator of the shape matrix V1,0

under any density generators, and consequently it can be used
as preliminary estimator. The SCM is a very popular estimator
of the covariance/shape matrix due to its low computational
complexity that makes it a suitable estimator in real-time
applications. However, its main drawback is in the fact that its
performance rapidly decreases in non-Gaussian data. In Fig.
1, we report the MSE indices as function of the number L of
observations of V̂?

SCM in (12) and of the R-estimator in (8)
that exploits V̂?

SCM as preliminary estimator. Note that both
the estimators are re-normalized according to (3). As score
function, we used the van der Waerden score [9]: 2

KvdW (u) , Φ−1G (u), (13)

where Φ−1G indicates the inverse function of the cdf of a
Gamma-distributed random variable with parameters (N, 1).
The resulting R-estimator will be indicated as V̂SCM

R,vdW . As
we can see from Fig. 1, the linear “one-step” correction term
L−1/2Υ̂−1∆̃V̂?

1,SCM
can improve significantly the efficiency

of the SCM at the price of a very small increase of com-
putational load. Indeed, the linear “one-step” correction can
be evaluated in closed form, without the need of any fixed
point iteration scheme required, for example, to implement an
M -estimator.

B. Tyler’s estimator as preliminary estimator

The result in Fig. 1 has been obtained by setting a shape
parameter λ for the t-distributed data equal to 2. It is in-
teresting to check the semiparametric efficiency of the R-
estimator in (8) as function of λ, i.e. as function of the data
“heavy tailedness”, for a given number L of data. Since, as
said before, the SCM suffers in non-Gaussian scenarios, we
may expect that the use of a robust M -estimator, e.g. Tyler’s
one, as preliminary estimator can lead to better finite-sample
performance. Let us start by introducing the constrained Tyler
estimator as a preliminary estimator. Tyler’s estimator V̂Ty

can be obtained as the convergence point of the following
fixed point iterative procedure:

V̂
(k+1)
Ty =

N

L

L∑
l=1

zlz
H
l

zHl [V̂
(k)
Ty ]−1zl

, (14)

where the starting point is, e.g., V
(0)
Ty = IN . In order to obtain

a proper preliminary estimator for the R-estimator in (8), the
usual constraint on the first top-left element has to be imposed:
V̂?

1,Ty = V̂Ty/[V̂Ty]1,1.
After the re-normalization in (3), in Fig. 2 we report the

MSE indices of the SCM and Tyler’s preliminary estimators,
V̂?
SCM and V̂?

Ty, together with the ones of the corresponding
R-estimators built upon them, i.e. V̂SCM

R,vdW and V̂Ty
R,vdW . As

before, the van der Waerden score KvdW in (13) is used. The
number of observations exploited here is equal to L = 5N , so
we are in a finite-sample regime.

2The choice of the score function will be discussed in the next Section.

As expected, V̂Ty
R,vdW outperforms V̂SCM

R,vdW in the presence
of heavy-tailed data (small λ). This is due to the robustness
property of Tyler’s estimator. Clearly, the price to pay is in
the computational cost needed to implement the fixed point
iterations required to obtain V̂Ty in (14). Moreover, V̂Ty

R,vdW

is an (almost) semiparametric efficient estimator for every
value of λ, even in finite-sample regime. As it can be noted
from (2), the MSE index of V̂Ty

R,vdW achieves the CSCRB
from λ > 6. Of course, in asymptotic regime, i.e. for L→∞,
this semiparametric efficiency property can be achieved for
smaller values of λ as well. Another interesting point to note in
Fig. 2 is the fact that, while possessing the same distributional
robustness property of the Tyler’s estimator, the R-estimator
V̂Ty
R,vdW outperforms Tyler’s one for almost all the values of λ.

Remarkably, this augmented efficiency can be obtained at the
negligible cost of evaluating the linear “one-step” correction
term L−1/2Υ̂−1∆̃V̂?

1,Ty
.

After having analyzed the impact of the choice of the
preliminary estimators of the finite-sample performance of the
R-estimator in (8), in the next section we will focus on the
selection of the score function K ∈ K.
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Fig. 1: MSE indices and CSCRB vs L (λ = 2).
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Fig. 2: MSE indices and CSCRB vs λ (L = 5N ).

IV. ON THE CHOICE OF THE SCORE FUNCTION K

In the context of rank statistics, the term score function indi-
cates a continuous scalar function K : (0, 1)→ R+ satisfying



the following two properties: i) K is square integrable and
ii) K can be expressed as the difference of two monotone
increasing functions [2]. A classical example of scores is the
set of power functions defined as Ka(u) = N(a+1)ua where
u ∈ (0, 1) and a ≥ 0 is a tuning parameter [11]. The celebrated
Wilcoxon (a = 1) and Spearman (a = 2) scores belong to this
set. Another way to build a score function is the one described
in [2], [3] and [9] where a “misspecified” approach [12] is
used. We refer to [9] for a theoretical description of this set
of scores and for a discussion on how to build them. Here
we limit ourselves to cite two examples: the van der Waerden
score already introduced in (13) and the tν-score given by:

Ktν (u) =
N(2N + ν)F−12N,ν(u)

ν + 2NF−12N,ν(u)
, u ∈ (0, 1), (15)

where F2N,ν(u) stands for the Fisher cdf with 2N and ν ∈
(0,∞) degrees of freedom. Note that, from the properties if the
Fisher distribution, we have: limν→∞Ktν (u) = KvdW (u).

In Fig. 3, after the usual re-normalization in (3), the MSE
indices of four R-estimators exploiting as score functions the
Wilcoxon (V̂Ty

R,Wi), the Spearman (V̂Ty
R,Sp), the tν- (V̂Ty

R,Ctν )
and the van der Waerden (V̂Ty

R,vdW ) scores are reported and
compared with the CSCRB. For the tν-score, a tuning param-
eter ν = 5 has been chosen. Moreover, in all R-estimators,
the Tyler’s estimator has been used as preliminary estimator.

A visual inspection of Fig. 3 tells us that, for λ > 6,
the van der Waerden score leads to the lowest MSE index
among the other considered scores. Moreover, it can be noted
that, for the power scores as the Wilcoxon and the Spearman
ones, the resulting MSE increases as the tuning parameter a
increases. However, this claim should be validated by further
theoretical and numerical analyses. The tν-score has the best
performance for highly heavy-tailed data (1 < λ < 5), while
it provides a MSE that is between the (good) one of the van
der Waerden score and the (bad) one of the power scores.
Again, tν-score depends on an additional tuning parameter ν
that should be carefully chosen. To conclude, we can say that
the van der Waerden score is a suitable score function since it
leads to an (almost) semiparametric efficient R-estimator and
does not depend on additional tuning parameter whose setting
may result to be impractical in real-world applications.

V. ROBUSTNESS WITH RESPECT TO OUTLIERS

This last section is dedicated to the analysis of the ro-
bustness to outliers of the R-estimator in (8). An outlier is
a random vector that presents a different statistical charac-
terization with respect to the main body of the observations.
In robust statistics, two main tools to quantify the robustness
to outliers of an estimator are its breakdown point and its
influence function [13, Ch. 11 and 12]. The evaluation of these
two fundamental tools will be left to future work. Anyway, in
this Section we provide a numerical study of the robustness to
outliers of the proposed R-estimator by considering the Tyler’s
one as benchmark. More specifically, we compare the MSE
indices of V̂Ty

R,vdW and of V̂Ty in two different scenarios:
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Fig. 3: MSE indices and CSCRB vs λ (L = 5N ).

1) The outliers are generated as random vectors uniformly
distributed on the complex unit sphere, i.e. u ∼
U(CSN−1), where CSN−1 , {u ∈ CN |||u|| = 1}.

2) The data are generated according to the Huber’s ε-
contamination model (see e.g. [13, Ch. 4]).

A. Case 1: CSN−1-uniformly distributed outliers

In this scenario, we assume to have L = Lp +Lo observa-
tions, where Lp is the number of “proper” observations while
Lo is the number of outliers. Specifically, let us assume to
have a dataset

Du ,
{
{zl}

Lp
l=1, {ul}

Lo
l=1

}
, (16)

where zl ∼ pZ(z|Σ0, h0) and h0 is the density generator
of a t-distribution given in (7), while ul ∼ U(CSN−1). In
our numerical analysis, we use the dataset Du to estimate the
shape matrix V0 = NΣ0/tr(Σ0) by means of the R-estimator
in (8), V̂Ty

R,vdW , and of Tyler’s one in (14), V̂Ty, both re-
normalized according to (3). Fig. 4 shows the MSE indices of
the two estimators as function of the percentage of outliers. As
we can see, the proposed R-estimator presents slightly better
performance than Tyler’s one. Anyway, the important fact to
be noted here is that the MSE of V̂Ty

R,vdW remains stable for
small percentage of outliers.
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Fig. 4: MSE indices vs % of outliers (L = 100N , λ = 2).



B. Case 2: ε-contamination model

The ε-contamination model has been firstly introduced by
Huber in the context of robust hypothesis testing [14]. Since
then, it has been widely adopted as a suitable device to assess
the robustness of both testing and estimation procedures. Let
PZ(z|Σ0, h0) be the nominal data CES distribution parameter-
ized by the scatter matrix Σ0 and the density generator h0 and
let QZ(z|Ξ0, l0) be a “contaminating” CES distribution whose
scatter matrix Ξ0 and density generator l0 may be different
from the nominal ones. Then, the ε-contamination model can
be expressed as the following set of distributions:

F , {FZ |FZ(z) = (1− ε)PZ(z|Σ0, h0)+

+εQZ(z|Ξ0, l0), ε ∈ [0, 1]} . (17)

Suppose now to have a dataset Dc of L i.i.d. observations
sampled from a pdf fZ(z) whose related distribution FZ(z)
belongs to F in (17), i.e.:

Dc = {zl}Ll=1, zl ∼ fZ(z). (18)

This implies that, with probability (1− ε), the lth observation
vector zl has distribution PZ(z|Σ0, h0) (i.e. it is a valuable
observation) while, with probability ε, zl has distribution
QZ(z|Ξ0, l0) (i.e. it is an outlier).

In our simulations, we assume as nominal distribution
PZ(z|Σ0, h0) the complex t-distribution whose relevant pdf is
given in (6). As contaminating CES distribution QZ(z|Ξ0, l0)
we adopt a Generalized Gaussian (GG) distribution whose
density generator can be expressed as [1]:

l0(t) =
sΓ(N)b−N/s

πNΓ(N/s)
exp (−ts/b) , (19)

As parameters characterizing the GG distribution, we choose
Ξ0 , σ2IN as scatter matrix, s = 0.1 as shape parameter
while b is set in order to provide for the outliers the same
statistical power σ2 of the t-distributed data.

As for the Case 1 previously discussed, we estimate the
shape matrix V0 = NΣ0/tr(Σ0) from the contaminated
dataset Dc in (18) by means of V̂Ty

R,vdW and of V̂Ty, both
re-normalized according to (3). The resulting MSE indices are
reported in Fig. 5 as function of the ε-contamination parameter.
It can be noted that, even if the Tyler’s estimator have slightly
better performance than the R-estimator, the MSE of V̂Ty

R,vdW

does not increase dramatically as ε increases and it remains
close to the one relative to V̂Ty.

VI. CONCLUDING REMARKS

In the first part of this paper, the “finite-sample” per-
formance of the proposed R-estimator have been analyzed
in different configurations and compared with the relevant
CSCRB. The proposed numerical investigation showed that the
setting involving Tyler’s estimator as preliminary estimator and
the van der Waerden score as score function leads to the lowest
MSE index among all the other considered configurations and
for almost all values of λ. Furthermore, the robustness to
outliers of the R-estimator has been assessed by using the one
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Fig. 5: MSE indices vs ε (L = 100N , λ = 2).

of Tyler’s estimator as benchmark. The proposed numerical
study revealed that the R-estimator is approximately as robust
to outliers as Tyler’s one. Needless to say, the numerical
analysis provided in this paper is just a first attempt but
a theoretical characterization of the robustness in terms of
breakdown point and influence function is necessary and it
is left to future works.
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